Small Business Innovation Research/Small Business Tech Transfer

Ultrasonic Additive Manufacturing of a deep throttling methane injector., Phase I

Completed Technology Project (2018 - 2019)

Project Introduction

Design and manufacture of a Liquid fuel injector optimized for Ultrasonic Additive Manufacturing. UAM delivers aerospace parts today at 97% of bulk material property and foil laydown rates at speeds significantly better then powder or filament process. UAM has traditionally been applied to 2-D planar surfaces. We will extend UAM into complex geometries and constructs suitable for rocket engine injectors.

Anticipated Benefits

Combustion research, low cost engines, low cost exploration programs.

Military field manufacturing, Civil manufacturing.

Primary U.S. Work Locations and Key Partners

Ultrasonic Additive Manufacturing of a deep throttling methane injector., Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destination	3

Small Business Innovation Research/Small Business Tech Transfer

Ultrasonic Additive Manufacturing of a deep throttling methane injector., Phase I

Completed Technology Project (2018 - 2019)

Organizations Performing Work	Role	Туре	Location
TGV Rockets, Inc.	Lead Organization	Industry Small Disadvantaged Business (SDB)	Washington, District of Columbia
Edison Welding Institute	Supporting Organization	Academia	Columbus, Ohio
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
District of Columbia	Ohio

Project Transitions

D July 2018:

July 2018: Project Start

August 2019: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140119)

Images

Briefing Chart Image

Ultrasonic Additive Manufacturing of a deep throttling methane injector., Phase I (https://techport.nasa.gov/imag e/131573)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

TGV Rockets, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Derek Lang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Ultrasonic Additive Manufacturing of a deep throttling methane injector., Phase I

Completed Technology Project (2018 - 2019)

Final Summary Chart Image
Ultrasonic Additive Manufacturing
of a deep throttling methane
injector., Phase I
(https://techport.nasa.gov/imag
e/134912)

Technology Areas

Primary:

TX01 Propulsion Systems

 □ TX01.1 Chemical Space
 Propulsion
 □ TX01.1.3 Cryogenic

Target Destination Earth